The potentials of conditional optimization in phasing and model building of protein crystal structures.
نویسندگان
چکیده
Model building is a pivotal step in protein-structure determination, because with an atomic model available the vast amount of geometrical prior knowledge may be applied to the structure-determination process. Here, conditional optimization, a method that does not require interpretation of the electron-density map, is described. Instead, this method refines loose atoms for which all chemical interpretations are considered simultaneously using an N-particle formalism. This method bears the potential of introducing the geometrical data much earlier in the structure-determination process, i.e. well before an interpretable electron-density map has been obtained. Here, results from two tests are presented: automated model building of three proteins with diffraction data extending to 2.4-3.0 A resolution and ab initio phasing of a small four-helical bundle with diffraction data to 2.0 A resolution. Models built automatically by the widely used programs ARP/wARP and RESOLVE and those from conditional optimization per se, without discrete modelling steps, had comparable phase quality and completeness, except in loop regions, which are poorly modelled by the current force field in conditional optimization. Optimization of multiple random starting models by conditional optimization yielded models revealing the four helices of the four-helical bundle.
منابع مشابه
Contour Crafting Process Plan Optimization Part I: Single-Nozzle Case
Contour Crafting is an emerging technology that uses robotics to construct free form building structures by repeatedly laying down layers of material such as concrete. The Contour Crafting technology scales up automated additive fabrication from building small industrial parts to constructing buildings. Tool path planning and optimization for Contour Crafting benefit the technology by increasin...
متن کاملConditional optimization: a new formalism for protein structure refinement.
Conditional optimization allows unlabelled loose-atom refinement to be combined with extensive application of geometrical restraints. It offers an N-particle solution for the assignment of topology to loose atoms, with weighted gradients applied to all possibilities. For a simplified test structure consisting of a polyalanine four-helical bundle, this method shows a large radius of convergence ...
متن کاملChallenges and surprises that arise with nucleic acids during model building and refinement
The process of building and refining crystal structures of nucleic acids, although similar to that for proteins, has some peculiarities that give rise to both various complications and various benefits. Although conventional isomorphous replacement phasing techniques are typically used to generate an experimental electron-density map for the purposes of determining novel nucleic acid structures...
متن کاملThree steps method for portfolio optimization by using Conditional Value at Risk measure
Comprehensive methods must be used for portfolio optimization. For this purpose, financial data of stock companies, inputs and outputs variable, the risk measure and investor’s preferences must be considered. By considering these items, we propose a method for portfolio optimization. In this paper, we used financial data of companies for screening the stock companies. We used Conditional Value ...
متن کاملOPTIMIZATION-BASED MONITORING-SUPPORTED CALIBRATION OF A THERMAL PERFORMANCE SIMULATION MODEL
Building performance simulation is being increasingly deployed beyond the building design phase to support efficient building operation. Specifically, the predictive feature of the simulation-assisted building systems control strategy provides distinct advantages in view of building systems with high latency and inertia. Such advantages can be exploited only if model predictions can be relied u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 60 Pt 12 Pt 1 شماره
صفحات -
تاریخ انتشار 2004